inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Calcium disodium hexathiodiphosphate(IV) octahydrate

Claus Ehrhardt and Mimoza Gjikaj*

Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Strasse 4, 38678 Clausthal-Zellerfeld, Germany Correspondence e-mail: mimoza.gjikaj@tu-clausthal.de

Received 11 June 2010; accepted 28 June 2010

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (P–P) = 0.001 Å; R factor = 0.029; wR factor = 0.065; data-to-parameter ratio = 21.7.

Single crystals of the title compound, $CaNa_2(P_2S_6) \cdot 8H_2O$, were obtained by adding calcium hydroxide to an aqueous solution of Na₄(P₂S₆)·6H₂O. The structure is isotypic with that of its strontium analogue and consists of one Ca²⁺ cation, two Na⁺ cations, one-half of a centrosymmetric $(P_2S_6)^{4-}$ anion with staggered confirmation and four water molecules in the asymmetric unit. The crystal structure can be described as being built up from layers of cations and anions extending parallel to (101). Within a layer, each CaO_8 polyhedron is connected via edge-sharing to two NaO₄S₂ octahedra and to one NaO₂S₄ octaedron. The NaO₄S₂ octahedra are, in turn, linked with two $(P_2S_6)^{4-}$ anions through common corners. Various O-H···S hydrogen-bonding interactions lead to cohesion of adjacent layers. The Ca²⁺ and one Na⁺ cation are situated on a twofold rotation axis and the second Na⁺ cation is situated on an inversion centre.

Related literature

For background to thiodiphosphates(IV), including their crystal structures, see: Jörgens *et al.* (2003); Klingen *et al.* (1973). For the synthesis of $Na_4(P_2S_6)\cdot 6H_2O$, see: Fincher *et al.* (1998). For the isotypic structure of $SrNa_2(P_2S_6)\cdot 8H_2O$, see: Ehrhardt & Gjikaj (2010).

Experimental

Crystal data CaNa₂(P₂S₆)·8H₂O $M_r = 484.49$ Monoclinic, C2/c a = 14.702 (2) Å b = 9.3081 (14) Å c = 14.052 (2) Å $\beta = 115.383$ (11)°

 $V = 1737.3 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.34 \text{ mm}^{-1}$ T = 223 K $0.29 \times 0.24 \times 0.23 \text{ mm}$

Data collection

Stoe IPDS 2 diffractometer 15223 measured reflections 2650 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	122 parameters
$wR(F^2) = 0.065$	All H-atom parameters refined
S = 1.13	$\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$
2650 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

2369 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.050$

Table 1

Selected bond lengths (Å).

Ca-O1	2.4244 (14)	Na2-O2	2.5282 (17)
Ca-O2	2.4614 (13)	Na2-S1 ⁱ	2.9242 (8)
Ca-O3	2.5123 (13)	Na2-S3	2.9673 (7)
Ca-O4	2.5249 (13)	P-S1	2.0156 (6)
Na1-O3	2.3523 (14)	P-S2	2.0241 (6)
Na1-O4	2.3713 (13)	P-S3	2.0282 (6)
Na1-S2 ⁱ	2.9768 (5)	$P-P^i$	2.2381 (8)
			· · · · · · · · · · · · · · · · · · ·

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots S3^{ii}$	0.78 (5)	2.58 (5)	3.2922 (17)	153 (4)
$O1 - H1B \cdot \cdot \cdot S2^{iii}$	0.79 (4)	2.62 (4)	3.2892 (16)	144 (4)
$O2-H2A\cdots S2^{ii}$	0.79 (3)	2.54 (3)	3.3270 (15)	172 (3)
$O2-H2B\cdots S2^{i}$	0.88 (3)	2.30 (3)	3.1877 (15)	179 (3)
$O3-H3A\cdots S1^{iv}$	0.78 (3)	2.43 (3)	3.1908 (15)	168 (2)
$O3-H3B\cdots S1^{ii}$	0.86 (3)	2.39 (3)	3.2174 (14)	161 (3)
$O4-H4A\cdots S3^{v}$	0.85 (3)	2.41 (3)	3.2468 (14)	171 (3)
$O4-H4B\cdots S3$	0.83 (3)	2.37 (3)	3.1957 (14)	171 (3)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + 1, y - 1, -z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2364).

References

Brandenburg, K. (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Ehrhardt, C. & Gjikaj, M. (2010). *Acta Cryst.* E66, i55.

Fincher, T., LeBret, G. & Cleary, D. A. (1998). J. Solid State Chem. 141, 274–281.

Jörgens, S., Mewis, A., Hoffmann, R.-D., Pöttgen, R. & Mosel, B. D. (2003). Z. Anorg. Allg. Chem. **629**, 429–433.

Klingen, W., Ott, R. & Hahn, H. (1973). Z. Anorg. Allg. Chem. **396**, 271–278. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2010). E66, i54 [doi:10.1107/S1600536810025304]

Calcium disodium hexathiodiphosphate(IV) octahydrate

C. Ehrhardt and M. Gjikaj

Comment

Alkaline earth hypothiodiphosphates were first reported by Klingen *et al.* (1973). The structure of the title compound is isotypic with that of the strontium analogue, $SrNa_2(P_2S_6).8H_2O$ (Ehrhardt & Gjikaj, 2010). The asymmetric unit of $CaNa_2(P_2S_6).8H_2O$ contains one Ca^{2+} cation, two Na^+ cations, one half of a $(P_2S_6)^{4-}$ anion in staggered conformation and four water molecules (Fig. 1).

Na(1) is octahedrally coordinated by four H₂O molecules and two sulfur atoms of two $(P_2S_6)^{4-}$ anions (Fig 2). Na(2) is also octahedrally coordinated by two H₂O molecules and four sulfur atoms of two $(P_2S_6)^{4-}$ anions (Fig. 3). The calcium cation is eightfold coordinated by water O atoms. The [CaO₈] coordination polyhedron can be described as a bicapped trigonal prism. The crystal structure is built up from layers extending parallel to (101). These layers consists of edge-sharing CaO₈ and Na(1)O₄S₂ polyedra, CaO₈ and Na(2)O₂S₄ polyhadra, as well as corner-sharing Na(1)O₄S₂ and (P₂S₆)⁴⁻ polyhedra.

The staggered $(P_2S_6)^{4-}$ anion is located on a centre of inversion, with a P—P distance of 2.2381 (8) Å. The P—P central bond links two PS₃ groups with P—S distances ranging from 2.0156 (6) to 2.0282 (6) Å. These values agree well with those reported previously for another hypothiodiphosphate structure (Jörgens *et al.*, 2003).

Neighbouring layers are held together by various O—H···S hydrogen bonding interactions. The donor—acceptor distances between O atoms of water molecules and S atoms of $(P_2S_6)^{4-}$ units range from 3.188 to 3.327 Å (Table 2).

Experimental

 $Na_4(P_2S_6).6H_2O$ has been prepared according to Fincher *et al.* (1998). The new ternary calcium disodium hexathiodiphosphate octahydrate was obtained by adding calcium hydroxide (2 mmol, 0.148 g) to a solution of $Na_4(P_2S_6).6H_2O$ (2 mmol, 0.910 g) in 40 ml distilled water at 333 K. Slow cooling to room temperature yielded colorless crystals of the title compound within some days.

Refinement

Hydrogen atoms were found from the difference Fourier map and were refined independently from their respective oxygen atoms with individual isotropic displacement parameters.

Figures

Fig. 1. The crystal structure of CaNa₂(P₂S₆).8H₂O in a projection along [010].

Fig. 2. Coordination of Na1 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. Symmetry codes as in Table 1. H atoms are represented as spheres of arbitrary radius.

Fig. 3. View of the edge-shared CaO_8 and $Na(2)O_2S_4$ polyhedra with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. Symmetry codes as in Table 1. H atoms are represented as spheres of arbitrary radius.

Calcium disodium hexathiodiphosphate(IV) octahydrate

Crystal data

CaNa ₂ (P ₂ S ₆)·8H ₂ O	F(000) = 992
$M_r = 484.49$	$D_{\rm x} = 1.852 \ {\rm Mg \ m^{-3}}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 15599 reflections
a = 14.702 (2) Å	$\theta = 1.0 - 30.5^{\circ}$
b = 9.3081 (14) Å	$\mu = 1.34 \text{ mm}^{-1}$
c = 14.052 (2) Å	T = 223 K
$\beta = 115.383 \ (11)^{\circ}$	Block, colorless
$V = 1737.3 (4) \text{ Å}^3$	$0.29\times0.24\times0.23~mm$
Z = 4	

Data collection

Stoe IPDS 2 diffractometer	2369 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.050$
graphite	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
ω–scans	$h = -20 \rightarrow 20$
15223 measured reflections	$k = -13 \rightarrow 13$
2650 independent reflections	$l = -20 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.029$	All H-atom parameters refined
$wR(F^2) = 0.065$	$w = 1/[\sigma^2(F_o^2) + (0.0256P)^2 + 2.2311P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
2650 reflections	$\Delta \rho_{max} = 0.68 \text{ e} \text{ Å}^{-3}$
122 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0046 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ca	0.5000	0.24842 (5)	0.2500	0.01531 (10)
Na1	0.2500	0.2500	0.0000	0.0240 (2)
Na2	0.5000	0.67523 (13)	0.2500	0.0318 (2)
Р	0.20227 (3)	0.76310 (4)	0.04363 (3)	0.01394 (9)
S1	0.06893 (3)	0.67248 (4)	-0.04913 (3)	0.02064 (10)
S2	0.18887 (3)	0.97575 (4)	0.06497 (3)	0.01807 (9)
S3	0.27954 (3)	0.66563 (4)	0.18473 (3)	0.02051 (10)
01	0.59411 (11)	0.04315 (16)	0.23418 (13)	0.0268 (3)
O2	0.50720 (10)	0.45732 (14)	0.14604 (10)	0.0217 (2)
O3	0.41702 (10)	0.16862 (14)	0.06107 (10)	0.0216 (2)
O4	0.31872 (9)	0.32895 (14)	0.17753 (10)	0.0199 (2)
H1A	0.629 (4)	0.053 (5)	0.205 (4)	0.096 (15)*
H1B	0.627 (3)	0.002 (4)	0.287 (3)	0.068 (12)*
H2A	0.554 (3)	0.462 (3)	0.133 (3)	0.048 (9)*
H2B	0.453 (2)	0.477 (3)	0.088 (3)	0.045 (8)*
H3A	0.4123 (19)	0.085 (3)	0.059 (2)	0.029 (6)*
H3B	0.454 (2)	0.192 (3)	0.030 (2)	0.042 (8)*
H4A	0.288 (2)	0.294 (3)	0.212 (3)	0.049 (8)*
H4B	0.306 (2)	0.416 (3)	0.172 (2)	0.040 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca	0.0144 (2)	0.01655 (19)	0.01458 (19)	0.000	0.00584 (15)	0.000
Na1	0.0192 (5)	0.0302 (5)	0.0196 (5)	-0.0001 (4)	0.0053 (4)	-0.0011 (4)
Na2	0.0283 (6)	0.0396 (6)	0.0249 (5)	0.000	0.0089 (4)	0.000
Р	0.01509 (18)	0.01411 (17)	0.01436 (17)	0.00019 (13)	0.00797 (14)	0.00016 (12)
S1	0.01688 (19)	0.02004 (18)	0.0257 (2)	-0.00401 (14)	0.00981 (15)	-0.00281 (14)
S2	0.01954 (19)	0.01504 (17)	0.01967 (18)	0.00092 (13)	0.00844 (14)	-0.00104 (13)
S3	0.0250 (2)	0.02236 (19)	0.01657 (17)	0.00676 (15)	0.01122 (15)	0.00515 (14)
O1	0.0201 (6)	0.0272 (6)	0.0298 (7)	0.0039 (5)	0.0075 (5)	-0.0023 (5)
O2	0.0197 (6)	0.0261 (6)	0.0187 (5)	-0.0009 (5)	0.0076 (5)	0.0038 (5)
O3	0.0241 (6)	0.0203 (6)	0.0227 (6)	0.0002 (5)	0.0124 (5)	-0.0026 (5)

supplementary materials

O4	0.0210 (6)	0.0195 (5)	0.0214 (6)	0.0014 (4)	0.0112 (5)	-0.0002 (4)
Geometric parar	neters (Å, °)					
Ca—O1		2.4244 (14)	Na	2—S1 ^{iv}		2.9242 (8)
Ca—O1 ⁱ		2.4244 (15)	Na	2—S3		2.9673 (7)
Ca—O2		2.4614 (13)	Na	2—83 ⁱ		2.9674 (7)
Ca—O2 ⁱ		2.4615 (13)	P—			2.0156 (6)
Ca—O3 ⁱ		2.5122 (13)	P—			2.0241 (6)
Ca—O3		2.5123 (13)	P–			2.0282 (6)
Ca—O4		2.5249 (13)	P–	$-P^{iv}$		2.2381 (8)
Ca—O4 ⁱ		2.5249 (13)	S1-	—Na2 ^{iv}		2.9242 (8)
Na1—O3		2.3523 (14)	S2-	—Na1 ^{vi}		2.9768 (5)
Na1—O3 ⁱⁱ		2.3523 (14)	01	—H1A		0.78 (5)
Na1—O4		2.3713 (13)	01	—H1B		0.79 (4)
Na1—O4 ⁱⁱ		2.3713 (13)	02	H2A		0.79 (3)
Na1—S2 ⁱⁱⁱ		2.9767 (5)	02	H2B		0.88 (3)
Na1—S2 ^{iv}		2.9768 (5)	03	H3A		0.78 (3)
Na2—O2		2.5282 (17)	03	—НЗВ		0.86 (3)
Na2—O2 ⁱ		2.5283 (17)	04	—H4A		0.85 (3)
Na2—S1 ^v		2.9242 (8)	04	—H4B		0.83 (3)
01—Ca—O1 ⁱ		75.99 (8)	04	ii—Na1—S2 ⁱⁱⁱ		90.48 (3)
O1—Ca—O2		113.37 (5)	03	Ma1—S2 ^{iv}		89.02 (4)
O1 ⁱ —Ca—O2		148.04 (5)	03	ii—Na1—S2 ^{iv}		90.98 (4)
O1—Ca—O2 ⁱ		148.04 (5)	04	—Na1—S2 ^{iv}		90.48 (3)
O1 ⁱ —Ca—O2 ⁱ		113.37 (5)	04	ii—Na1—S2 ^{iv}		89.52 (3)
O2—Ca—O2 ⁱ		75.64 (6)	S2	ⁱⁱⁱ —Na1—S2 ^{iv}		180.0
O1—Ca—O3 ⁱ		79.99 (5)	02	—Na2—O2 ⁱ		73.30 (7)
O1 ⁱ —Ca—O3 ⁱ		73.01 (5)	02	—Na2—S1 ^v		149.72 (4)
O2—Ca—O3 ⁱ		137.37 (4)	02	ⁱ —Na2—S1 ^v		85.08 (3)
O2 ⁱ —Ca—O3 ⁱ		74.41 (4)	02	—Na2—S1 ^{iv}		85.08 (3)
O1—Ca—O3		73.01 (5)	02	ⁱ —Na2—S1 ^{iv}		149.72 (4)
O1 ⁱ —Ca—O3		79.99 (5)	S1	v—Na2—S1 ^{iv}		122.01 (5)
O2—Ca—O3		74.42 (4)	02	e—Na2—S3		96.20 (4)
O2 ⁱ —Ca—O3		137.37 (4)	02	ⁱ —Na2—S3		81.01 (4)
O3 ⁱ —Ca—O3		145.61 (6)	S1	v—Na2—S3		101.16 (2)
01—Ca—O4		137.92 (5)	S1	^{iv} —Na2—S3		80.537 (18)
O1 ⁱ —Ca—O4		74.08 (5)	02	e—Na2—S3 ⁱ		81.01 (4)
O2—Ca—O4		80.36 (5)	02	ⁱ —Na2—S3 ⁱ		96.20 (4)
O2 ⁱ —Ca—O4		72.44 (4)	S1	v—Na2—S3 ⁱ		80.537 (17)
O3 ⁱ —Ca—O4		117.68 (4)	S1	^{iv} —Na2—S3 ⁱ		101.16 (2)
O3—Ca—O4		73.21 (4)	S3-	—Na2—S3 ⁱ		176.55 (5)

O1—Ca—O4 ⁱ	74.08 (5)	S1—P—S2	112.06 (3)
O1 ⁱ —Ca—O4 ⁱ	137.92 (5)	S1—P—S3	115.28 (3)
O2—Ca—O4 ⁱ	72.44 (4)	S2—P—S3	109.99 (3)
O2 ⁱ —Ca—O4 ⁱ	80.36 (5)	S1—P—P ^{iv}	105.34 (3)
O3 ⁱ —Ca—O4 ⁱ	73.21 (4)	S2—P—P ^{iv}	108.14 (3)
O3—Ca—O4 ⁱ	117.68 (4)	S3—P—P ^{iv}	105.48 (3)
O4—Ca—O4 ⁱ	145.46 (6)	P—S1—Na2 ^{iv}	105.07 (3)
O3—Na1—O3 ⁱⁱ	180.0	P—S2—Na1 ^{vi}	137.04 (2)
O3—Na1—O4	78.97 (4)	P—S3—Na2	111.63 (3)
O3 ⁱⁱ —Na1—O4	101.03 (4)	H1A—O1—H1B	105 (4)
O3—Na1—O4 ⁱⁱ	101.03 (4)	Ca—O2—Na2	105.53 (5)
O3 ⁱⁱ —Na1—O4 ⁱⁱ	78.97 (4)	H2A—O2—H2B	108 (3)
O4—Na1—O4 ⁱⁱ	179.999 (2)	Na1—O3—Ca	104.38 (5)
O3—Na1—S2 ⁱⁱⁱ	90.98 (4)	Na1—O4—Ca	103.44 (5)
O3 ⁱⁱ —Na1—S2 ⁱⁱⁱ	89.02 (4)	H4A—O4—H4B	106 (3)
O4—Na1—S2 ⁱⁱⁱ	89.52 (3)		

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1/2, -*y*+3/2, -*z*; (v) *x*+1/2, -*y*+3/2, *z*+1/2; (vi) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
O1—H1A····S3 ^{vii}	0.78 (5)	2.58 (5)	3.2922 (17)	153 (4)
O1—H1B···S2 ^{viii}	0.79 (4)	2.62 (4)	3.2892 (16)	144 (4)
O2—H2A…S2 ^{vii}	0.79 (3)	2.54 (3)	3.3270 (15)	172 (3)
O2—H2B S2 ^{iv}	0.88 (3)	2.30 (3)	3.1877 (15)	179 (3)
O3—H3A…S1 ⁱⁱ	0.78 (3)	2.43 (3)	3.1908 (15)	168 (2)
O3—H3B…S1 ^{vii}	0.86 (3)	2.39 (3)	3.2174 (14)	161 (3)
O4—H4A····S3 ^{ix}	0.85 (3)	2.41 (3)	3.2468 (14)	171 (3)
O4—H4B…S3	0.83 (3)	2.37 (3)	3.1957 (14)	171 (3)
Symmetry codes: (vii) $x+1/2$, $v-1/2$, z : (viii) $-x+1$, v	-1 -z + 1/2 (iv) $-x + 1$	1/2 - v + 3/2 - z (ii) -	-x+1/2 $-v+1/2$ $-z$ (ix) $-x+1/2$ v-1

Symmetry codes: (vii) x+1/2, y-1/2, z; (viii) -x+1, y-1, -z+1/2; (iv) -x+1/2, -y+3/2, -z; (ii) -x+1/2, -y+1/2, -z; (ix) -x+1/2, y-1/2, -z+1/2.

Fig. 2

